Lecturer
Dr Muhammad Nazam
Dr. Muhammad Nazam, PhD completed during January 2015-November 2018, is an accomplished academician with over 5 years of teaching and research experience. As a teacher, he designed and taught a variety of courses at BS, M. Sc, and M. Phil level at AIOU.
051 9055731
muhammad.nazam@aiou.edu.pk
Education
- 2018 Ph.D. Mathematics, International Islamic University, Islamabad, Pakistan Specialization: Functional Analysis (Fixed Point Theory).
Title of Ph.D. Thesis: Existence of Solutions of Fixed Point Problems of Generalized
Contraction Mappings with Applications.
Supervisor: Prof. Dr. Muhammad Arshad
- 2014 M. Phil. Mathematics, Government College University, Lahore, Pakistan.
Title of M. Phil. Thesis: Spanning Simplicial Complexes of General Friendship Graphs.
Supervisor: Dr. Hasan Mahmood
- 2003 M.Sc. Mathematics, Punjab University Lahore, Pakistan.
Experience
-
- April 2018- To date: Lecturer, Department of Mathematics, Allama Iqbal Open University, Islamabad, Pakistan.
- September 2015-January 2018: Visiting Lecturer in Mathematics, Department of Mathematics & Statistics, International Islamic University, Islamabad, Pakistan.
- 2013-2018: Lecturer in Mathematics, FGEI’s (C / G) Rawalpindi, Pakistan.
- 2008-2013: Mathematics Teacher, Garrison Academy for Boys (APSACS), Lahore Cantt., Pakistan.
Publications
- A. Arif, M. NAZAM, H H. Alsulami, A. Hussain, H. Mahmood, Fixed point and homotopy methods in cone A-metric spaces and application to the existence of solutions to Urysohn integral equation, Symmetry, 2022, 14, 1328. https://doi.org/10.3390/sym1407132.
- K. Javed, M. NAZAM, A. Hussain, H H. Al-Sulami, M. Arshad, Best proximity point theorems for the generalized fuzzy interpolative proximal contractions, Fractal and Fractional, Manuscript ID: 1744605.
- M. NAZAM, K. Javed, M. Arshad, The (Φ, Ψ) -orthogonal interpolative contractions and an application to fractional differential equations, ACCEPTED in Filomat.
- M. NAZAM, H. Aydi, A. Hussain, Existence theorems for (Φ, Ψ)-orthogonal interpolative contractions and an application to fractional differential equations, Optimization, 71, https://doi.org/10.1080/02331934.2022.2043858.
- O. Acar, M. NAZAM, Existence theorems for the contractions in weak partial metric spaces, TWMS J. Pure Appl. Math. To appear in Vol. 13 No. 2. (HEC, SCIE)
- M. NAZAM, A. Hussain, and H. H Al Sulami, Remarks on the generalized interpolative contractions and some fixed-point theorems with application, Open Mathematics, to appear in 20(1) 2022.
- T. Rasham, M. NAZAM, H. AYDI, A. Shoaib, C. Park, Hybrid pair of multivalued mappings in modular like metric spaces and applications, AIMS Mathematics, 7(6) 2022: 10582-10595
- S. Anwar, M. NAZAM, K. Javed, M. Arshad, Existence fixed point theorems in the partial b-metric spaces and an application to the boundary value problem, AIMS Mathematics, 7(2022), 8188-8205.
- A. Arif, M. NAZAM, A. Hussain, M. Abbas, Ordered implicit relations and related fixed point problems in the cone b-metric spaces, AIMS Mathematics 7(4) (2022) 5199-5219.
- M. NAZAM, H. Aydi, A. Hussain, Generalized interpolative contractions and an application, Journal of Mathematics Vol. 2021, Art ID 6461477.
- M. NAZAM, Zahida Hamid, Hamed Al Sulam, A. Hussain, Common fixed-point theorems in the partial b-metric spaces and an application to the system of boundary value problems, Journal of Function Spaces. Vol. 2021, Art ID 7777754, 11 pages. (HEC, SCIE).
- M. NAZAM, H. Isik, K. Javed, M. Naeem, M. Arshad, The existence of fixed points for a different type of contractions on partial b-metric spaces, Journal of Mathematics, Vol. 2021, Art ID 5158552, 11 pages (HEC, SCIE).
- E. Ameer, H. Aydi, M. NAZAM, Manuel De la Sen, Results on fixed circles and discs for L (ω, C)-contractions and related applications, Advances in Difference Equations (2021) 2021:349 https://doi.org/10.1186/s13662-021-03510-w (HEC, SCIE).
- M. NAZAM, H. Aydi, C. Park, M. Arshad, Some variants of Wardowski fixed point theorem, Advances in Difference Equations 2021, (2021) 2021:485 (HEC, SCIE).
- M. NAZAM, E. Ameer, M. Mursaleen, O. Acar, Nonlinear inequalities and related fixed-point problems, Journal of Mathematical Inequalities Vol. 15 No.3 (2021) 941-967 (HEC, SCIE).
- M. NAZAM, C. Park, M. Arshad, Fixed point problems for generalized contractions with applications, Advances in Difference Equations 2021, 247 (2021). https://doi.org/10.1186/s13662-021-03405-w (HEC, SCIE).
- S. O. Kim, M. NAZAM, Existence theorems on advanced contractions with Applications, Journal of Function Spaces, Vol. 2021 Article ID 6625456, 15 pages. (HEC, SCIE)
- E. Ameer, H. Aydi, H. Isik, M. NAZAM, Vahid Parvaneh, M. Arshad, Some existence results for the system of nonlinear fractional differential equations, Journal of Mathematics, Vol. 2020, Article ID 4786053, 17 pages, http://doi.org/10.1155/2020/4786053. (HEC, SCIE)
- M. NAZAM, A. Arif, H. Mahmood, S. O. Kim, Fixed Point Problems in Cone Rectangular Metric Spaces with Applications, Journal of Function Spaces, Vol. 2020 Article ID 8021234 https://doi.org/10.1155/2020/8021234. (HEC, SCIE)
- M. NAZAM, On Jc-contraction and related fixed point problem with applications, Math. Meth. Appl. Sci. (2020) 43(17), 10221-10236. https://doi.org/10.1002/mma.6689 (HEC, SCIE)
- M. NAZAM, A. Arif, C. Park, H. Mahmood, Some results in cone metric spaces with applications in homotopy theory, Open Math. 2020; 18: 295-306. (HEC, SCIE)
- M. NAZAM, H. Aydi, A. Mukheimer, M. Arshad, R. Riaz, Fixed point results for dualistic contractions with an application, Discrete Dynamics in Nature and Society, Volume 2020, Article ID 6428671, 9 pages https://doi.org/10.1155/2020/6428671. (HEC, SCIE)
- M. NAZAM, M. Arshad, Fixed point results for α-nonexpansive mappings on partial b-metric spaces, Thai Journal of Mathematics Vol. 18, No. 1 (2020), Pages 38 - 52. (HEC, ESCI)
- M. NAZAM, H. Aydi, M. Arshad, A real generalization of Dass-Gupta fixed point theorem, TWMS J. Pure Appl. Math. V.11, N.1, 2020, pp. 109-118. (HEC, SCIE)
- M. NAZAM, C. Park, M. Arshad, H. Mahmood, On a Fixed Point Theorem with Application to Functional Equations, Open Math. 2019; 17:1724-1736. (HEC, SCIE)
- M. NAZAM, N. Hussain, A. Hussain, M. Arshad, Fixed point theorems for weakly
admissible pair of F-contractions with application, Nonlinear Analysis: Modelling and Control 24(6) 898-918 (2019). (HEC, SCIE)
- A. Asif , M. NAZAM, M. Arshad,
Metric,
Contraction and Common Fixed Point Theorems with Applications, Mathematics, 7(5), 586, 1-13 (2019). (HEC, SCIE)
- M. NAZAM, H. Aydi, M. S. Noorani, Existence of fixed points of four maps for a new generalized F-contraction and an application, Journal of Function Spaces, Volume 2019, Article ID 5980312, 8 pages. (HEC, SCIE)
- E. Ameer, M. NAZAM, M. Arshad, On (Λ, Υ, <)-Contractions and Applications to Nonlinear Matrix Equations, Mathematics, 7(5), 443, 1-18 (2019). (HEC, SCIE)
- M. NAZAM, C. Park, A. Hussain, M. Arshad, J.R. Lee, Fixed point theorems for F-contractions on closed ball in partial metric spaces. Journal of Computational Analysis & Applications 27 (2019), 759-769. (HEC, SCOPUS)
- M. NAZAM, M. Arshad, C. Park, Ö Acar, S. Yun, G. A. Anastassiou, On solution of a system of differential equations via fixed point theorem. Journal of Computational Analysis & Applications 27 (2019), 417-426. (HEC, SCOPUS)
- M. NAZAM, M. Arshad, C. Park, S. Yun, Fixed points of Círíc type ordered F-contractions on partial metric spaces. Journal of Computational Analysis & Applications 26 (2019) 1459-1470. (HEC, SCOPUS)
- M. NAZAM, C. Park, M. Arshad, S. Yun, On dual partial metric topology and a fixed point theorem, Journal of Computational Analysis and Applications 26 (2019), 832-840. (HEC, SCOPUS)
- E. Ameer, H. Huang, M. NAZAM, M. Arshad, Fixed point theorems for multivalued
contractions with
admissible mappings in partial b-metric spaces and application, Scientific Bulletin (UPB), 81(2), 97-108 (2019). (HEC, SCIE)
- M. NAZAM, O. Acar, Fixed points of (α, ψ)-contractions in Hausdorff partial metric spaces, Math. Meth. Appl. Sci. 42(16), 5159-5173 (2019). (HEC, SCIE)
- M. NAZAM, M. Arshad, Fixed Point Theorems for Weak Contractions in Dualistic Partial Metric Spaces, International Journal of Nonlinear Analysis and Applications, Vol. 9 No. 2, 179-190 (2019). (HEC, ESCI)
- M. NAZAM, H. Aydi, M. Arshad, On some problems regarding set valued (α, ψ) F-contractions, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. Vol. 68 ,No. 2, 1240-1255. (2019). (HEC, ESCI)
- Ma Zhenhua, M. NAZAM, S. U. Khan, Li Xiangling, Fixed point theorems for generalized
-contractions with applications, Journal of Function Spaces, Vol. 2018, paper ID: 8368546, 10 pages. (HEC, SCIE)
- H. Aydi, R. Bankovic, I. Mitrovic, M. NAZAM, Nemytzki-Edelstein-Meir-Keeler type results in b-metric spaces, Discrete Dynamics in Nature and Society, Vol. 2018 Art. ID 4745764, 7 pages. (HEC, SCIE)
- M. NAZAM, M. Arshad, M. Postolache, Coincidence and common fixed point theorems for four mappings satisfying (
,F)-contraction, Nonlinear Analysis: Modelling and Control Vol. 23 No. 5(2018), 664-690. (HEC, SCIE)
- M. NAZAM, M. Arshad, Some Fixed Point Results in Ordered Dualistic Partial Metric Spaces, Transactions of A. Razmadze Mathematical Institute, 172 (2018), 498-509. (HEC, ESCI)
- M. NAZAM, M. Arshad, M. Postolache, On Common Fixed Point Theorems in Dualistic Partial Metric Spaces, Journal of Mathematical Analysis, 9 (2018), 76-89. (ESCI)
- O. Acar, Ma Zhenhua, M. NAZAM, S. U. Khan, Fixed Point Theorems For Integral Type Mappings Subject to
-Distance, Journal of Mathematical Analysis, 9 (2018), 59-69. (ESCI)
- M. NAZAM, O. Acar, On Common Fixed Points Theorems For Ordered F-contractions With Application, Facta Universitatis Ser. Math. Inform., 33 (2018), 125-140.
- M. NAZAM, M. Arshad, A. Hussain, Fixed Points of Chatterjea Type Multi-valued F-Contractions on Closed Ball, Nonlinear Functional Analysis and Applications, 23 (2018), 259-274. (HEC, ESCI)
- M. NAZAM, M. Arshad, C. Park, On Fixed Point Theorems in Dualistic Partial Metric Spaces, J. Computational Analysis and Applications, 24 (2018), 1334-1344. (HEC, SCIE)
- M. NAZAM, M. Arshad, C. Park, On Solution of System of Integral Equations via Fixed Point Method, J. Computational Analysis and Applications, 24 (2018), 1474-1482. (HEC, SCIE)
- M. NAZAM, M. Arshad, C. Park, Dualistic Contractions of Rational Type and Related Fixed Point Theorems, J. Computational Analysis and Applications, 25 (2018), 1199-1209. (HEC, SCIE)
- M. NAZAM, M. Arshad, C. Park, A Common Fixed Point Theorem for a Pair of Generalized Contraction Mappings with Applications, J. Computational Analysis and Applications, 25 (2018), 552-565. (HEC, SCIE)
- M. NAZAM, Ma Zhenhua, S. U. Khan, M. Arshad, Common Fixed Points of Four Maps Satisfying F-Contraction on b-metric Spaces, Journal of Function Spaces, Vol. 2017 paper ID: 9389768, 11 pages. (HEC, SCIE)
- M. NAZAM, C. Park, M. Arshad, Common Fixed Points of Generalized Rational Contractions on a Closed Ball in Partial Metric Spaces, J. Nonlinear Sci. Appl. 10 (2017), 5261-5270. (HEC, SCIE)
- M. NAZAM, M. Arshad, M. Abbas, Existence of Common Fixed Points of Improved F-Contractions on Partial Metric Spaces, Appl. Gen. Topol., 18 (2017), 277-287. (HEC, ESCI)
- A Hussain, M Arshad, M NAZAM, New Type of Multivalued F-Contraction Involving Fixed Points on Closed Ball, J. Math. Comp. Sci. 17 (2017), 246-254. (HEC, ESCI)
- A. Hussain, M. Arshad, M. NAZAM, Connection of Ciric type F-contraction involving fixed point on closed ball, Gazi University Journal of Science 30 (2017), 283-291. (HEC, SCOPUS)
- M. NAZAM, M. Arshad, O. Valero, A. Shoaib, On Dualistic Contractive Mappings, TWMS J. Pure Appl. Math., 8 (2017), 186-197. (HEC, SCIE)
- M. NAZAM, A. Ghiura, M. Arshad, Common Fixed Point Theorem for Generalized b-Order Rational Contraction with Application, Journal of Mathematical Analysis, 8 (2017), 34-45. (ESCI)
- M. NAZAM, M. Arshad, C. Park, A fixed point theorem with application to a class of integral equations, Journal of Mathematical Extension, 11 (2017), 71-83. (HEC, ESCI)
- M. NAZAM, M. Arshad, C. Park, Fixed Point Theorems For Improved
-Geraghty Contractions in Partial Metric Spaces, J. Nonlinear Sci. Appl. 9(6) (2016), 4436-4449. (HEC, SCIE)
- M. Arshad, M. NAZAM, I. Beg, Fixed Point Theorems in Ordered Dualistic Partial Metric Spaces, Korean J. Math. 24 (2016), 169-179. (HEC, ESCI)
- S.U. Khan, M. Arshad, A. Hussain, M. NAZAM, Two new types of fixed point theorems for F-contraction, Journal of Advanced Studies in Topology 7 (4), (2016) 251-260.
- M. NAZAM, M. Arshad, M. Abbas, Some Fixed Point Results For Dualistic Rational Contractions, Appl. Gen. Topol. 17 (2016), 199-209. (HEC, ESCI)
Project, Research Interests
- Fixed-point theory and its applications
- Optimization Theory
- Real and Complex Analysis
- Functional analysis
- Research Project
- HEC research project under NRPU 2022 (Award No. 15548, Rs. 5205000)