Skip to main content
Lecturer
Dr Muhammad Nazam
Dr. Muhammad Nazam, PhD completed during January 2015-November 2018, is an accomplished academician with over 5 years of teaching and research experience. As a teacher, he designed and taught a variety of courses at BS, M. Sc, and M. Phil level at AIOU.
051 9055731
muhammad.nazam@aiou.edu.pk

Education

 

  1. 2018 Ph.D. Mathematics, International Islamic University, Islamabad, Pakistan Specialization: Functional Analysis (Fixed Point Theory).

Title of Ph.D. Thesis: Existence of Solutions of Fixed Point Problems of Generalized

Contraction Mappings with Applications.

Supervisor: Prof. Dr. Muhammad Arshad

  1. 2014 M. Phil. Mathematics, Government College University, Lahore, Pakistan.

Title of M. Phil. Thesis: Spanning Simplicial Complexes of General Friendship Graphs.

Supervisor: Dr. Hasan Mahmood

  1. 2003 M.Sc. Mathematics, Punjab University Lahore, Pakistan.

Experience

    1. April 2018- To date: Lecturer, Department of Mathematics, Allama Iqbal Open University, Islamabad, Pakistan.
    2. September 2015-January 2018: Visiting Lecturer in Mathematics, Department of Mathematics & Statistics, International Islamic University, Islamabad, Pakistan.
    3. 2013-2018: Lecturer in Mathematics, FGEI’s (C / G) Rawalpindi, Pakistan.
    4. 2008-2013: Mathematics Teacher, Garrison Academy for Boys (APSACS), Lahore Cantt., Pakistan.

Publications

  1. A. Arif, M. NAZAM, H H. Alsulami, A. Hussain, H. Mahmood, Fixed point and homotopy methods in cone A-metric spaces and application to the existence of solutions to Urysohn integral equation, Symmetry,  2022, 14, 1328. https://doi.org/10.3390/sym1407132.
  2. K. Javed, M. NAZAM, A. Hussain, H H. Al-Sulami, M. Arshad, Best proximity point theorems for the generalized fuzzy interpolative proximal contractions, Fractal and Fractional, Manuscript ID: 1744605.
  3. M. NAZAM, K. Javed, M. Arshad, The (Φ, Ψ) -orthogonal interpolative contractions and an application to fractional differential equations, ACCEPTED in Filomat.
  4. M. NAZAM, H. Aydi, A. Hussain, Existence theorems for (Φ, Ψ)-orthogonal interpolative contractions and an application to fractional differential equations, Optimization, 71, https://doi.org/10.1080/02331934.2022.2043858.
  5. O. Acar, M. NAZAM, Existence theorems for the contractions in weak partial metric spaces, TWMS J. Pure Appl. Math. To appear in Vol. 13 No. 2. (HEC, SCIE)
  6. M. NAZAM, A. Hussain, and H. H Al Sulami, Remarks on the generalized interpolative contractions and some fixed-point theorems with application, Open Mathematics, to appear in 20(1) 2022.
  7. T.  Rasham, M. NAZAM, H. AYDI, A. Shoaib, C. Park, Hybrid pair of multivalued mappings in modular like metric spaces and applications, AIMS Mathematics, 7(6) 2022: 10582-10595
  8. S. Anwar, M. NAZAM, K. Javed, M.  Arshad, Existence fixed point theorems in the partial b-metric spaces and an application to the boundary value problem, AIMS Mathematics, 7(2022), 8188-8205.
  9. A. Arif, M. NAZAM, A. Hussain, M. Abbas, Ordered implicit relations and related fixed point problems in the cone b-metric spaces, AIMS Mathematics 7(4) (2022) 5199-5219.
  10. M. NAZAM, H. Aydi, A. Hussain, Generalized interpolative contractions and an application, Journal of Mathematics Vol. 2021, Art ID 6461477.
  11. M. NAZAM, Zahida Hamid, Hamed Al Sulam, A. Hussain, Common fixed-point theorems in the partial b-metric spaces and an application to the system of boundary value problems, Journal of Function Spaces. Vol. 2021, Art ID 7777754, 11 pages. (HEC, SCIE).
  12. M. NAZAM, H. Isik, K. Javed, M. Naeem, M. Arshad, The existence of fixed points for a different type of contractions on partial b-metric spaces, Journal of Mathematics, Vol. 2021, Art ID 5158552, 11 pages (HEC, SCIE).
  13. E. Ameer, H. Aydi, M. NAZAM, Manuel De la Sen, Results on fixed circles and discs for L (ω, C)-contractions and related applications, Advances in Difference Equations (2021) 2021:349 https://doi.org/10.1186/s13662-021-03510-w (HEC, SCIE).
  14. M. NAZAM, H. Aydi, C. Park, M. Arshad, Some variants of Wardowski fixed point theorem, Advances in Difference Equations 2021, (2021) 2021:485 (HEC, SCIE).
  15. M. NAZAM, E. Ameer, M. Mursaleen, O. Acar, Nonlinear inequalities and related fixed-point problems, Journal of Mathematical Inequalities Vol. 15 No.3 (2021) 941-967 (HEC, SCIE).
  16. M. NAZAM, C. Park, M. Arshad, Fixed point problems for generalized contractions with applications, Advances in Difference Equations 2021247 (2021). https://doi.org/10.1186/s13662-021-03405-w (HEC, SCIE).
  17. S. O. Kim, M. NAZAM, Existence theorems on advanced contractions with Applications, Journal of Function Spaces, Vol. 2021 Article ID 6625456, 15 pages. (HEC, SCIE)
  18. E. Ameer, H. Aydi, H. Isik, M. NAZAM, Vahid Parvaneh, M. Arshad, Some existence results for the system of nonlinear fractional differential equations, Journal of Mathematics, Vol. 2020, Article ID 4786053, 17 pages, http://doi.org/10.1155/2020/4786053. (HEC, SCIE)
  19. M. NAZAM, A. Arif, H. Mahmood, S. O. Kim, Fixed Point Problems in Cone Rectangular Metric Spaces with Applications,  Journal of Function Spaces, Vol. 2020 Article ID 8021234 https://doi.org/10.1155/2020/8021234. (HEC, SCIE)
  20. M. NAZAM, On Jc-contraction and related fixed point problem with applications, Math. Meth. Appl. Sci. (2020) 43(17), 10221-10236. https://doi.org/10.1002/mma.6689  (HEC, SCIE)
  21. M. NAZAM, A. Arif, C. Park, H. Mahmood,  Some results in cone metric spaces with applications in homotopy theory, Open Math. 2020; 18: 295-306. (HEC, SCIE)
  22. M. NAZAM, H. Aydi, A. Mukheimer, M. Arshad, R. Riaz, Fixed point results for dualistic contractions with an application,  Discrete Dynamics in Nature and Society, Volume 2020, Article ID 6428671, 9 pages https://doi.org/10.1155/2020/6428671. (HEC, SCIE)
  23. M. NAZAM, M. Arshad, Fixed point results for α-nonexpansive mappings on partial b-metric spaces, Thai Journal of Mathematics Vol. 18, No. 1 (2020), Pages 38 - 52. (HEC, ESCI)
  24. M. NAZAM, H. Aydi, M. Arshad, A real generalization of Dass-Gupta fixed point theorem, TWMS J. Pure Appl. Math. V.11, N.1, 2020, pp. 109-118. (HEC, SCIE)
  25. M. NAZAM, C. Park,  M. Arshad, H. Mahmood, On a Fixed Point Theorem with Application to Functional Equations, Open Math. 2019; 17:1724-1736. (HEC, SCIE)
  26. M. NAZAM, N. Hussain, A. Hussain,  M. Arshad, Fixed point theorems for weakly  admissible pair of F-contractions with application, Nonlinear Analysis: Modelling and Control  24(6) 898-918 (2019). (HEC, SCIE)
  27. A.  Asif , M. NAZAM, M. Arshad,  Metric,  Contraction and Common Fixed Point Theorems with Applications, Mathematics, 7(5), 586, 1-13 (2019). (HEC, SCIE)
  28. M. NAZAM, H. Aydi, M. S. Noorani, Existence of fixed points of four maps for a new generalized F-contraction and an application, Journal of Function Spaces, Volume 2019, Article ID 5980312, 8 pages. (HEC, SCIE)
  29. E. Ameer, M. NAZAM, M. Arshad, On (Λ, Υ, <)-Contractions and Applications to Nonlinear Matrix Equations, Mathematics, 7(5), 443, 1-18 (2019). (HEC, SCIE)
  30. M. NAZAM, C. Park, A. Hussain, M. Arshad, J.R. Lee, Fixed point theorems for F-contractions on closed ball in partial metric spaces. Journal of Computational Analysis & Applications 27 (2019), 759-769. (HEC, SCOPUS)
  31. M. NAZAM, M.  Arshad, C.  Park, Ö Acar, S. Yun, G. A. Anastassiou, On solution of a system of differential equations via fixed point theorem. Journal of Computational Analysis & Applications 27 (2019), 417-426. (HEC, SCOPUS)
  32. M. NAZAM, M. Arshad, C. Park, S. Yun, Fixed points of Círíc type ordered F-contractions on partial metric spaces. Journal of Computational Analysis & Applications 26 (2019) 1459-1470. (HEC, SCOPUS)
  33. M. NAZAM, C. Park, M. Arshad, S. Yun, On dual partial metric topology and a fixed point theorem, Journal of Computational Analysis and Applications 26 (2019), 832-840. (HEC, SCOPUS)
  34. E. Ameer, H. Huang, M. NAZAM, M. Arshad, Fixed point theorems for multivalued  contractions with  admissible mappings in partial b-metric spaces and application, Scientific Bulletin (UPB), 81(2),  97-108 (2019). (HEC, SCIE)
  35. M. NAZAM, O. Acar, Fixed points of (α, ψ)-contractions in Hausdorff partial metric spaces, Math. Meth. Appl. Sci.  42(16), 5159-5173 (2019). (HEC, SCIE)
  36. M. NAZAM, M. Arshad, Fixed Point Theorems for Weak Contractions in Dualistic Partial Metric Spaces, International Journal of Nonlinear Analysis and Applications, Vol. 9 No. 2, 179-190 (2019). (HEC, ESCI)
  37. M. NAZAM, H. Aydi, M. Arshad, On some problems regarding set valued (α, ψ) F-contractions, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. Vol. 68 ,No. 2, 1240-1255. (2019). (HEC, ESCI)
  38. Ma Zhenhua, M. NAZAM,  S. U. Khan, Li Xiangling, Fixed point theorems for generalized    -contractions with applications, Journal of Function Spaces, Vol. 2018, paper ID:  8368546, 10 pages. (HEC, SCIE)
  39. H. Aydi, R. Bankovic, I.  Mitrovic,  M. NAZAM, Nemytzki-Edelstein-Meir-Keeler type results in b-metric spaces, Discrete Dynamics in Nature and Society, Vol. 2018 Art. ID 4745764, 7 pages. (HEC, SCIE)
  40. M. NAZAM,  M. Arshad, M. Postolache, Coincidence and common fixed point theorems for four mappings satisfying ( ,F)-contraction,  Nonlinear Analysis: Modelling and Control Vol. 23 No. 5(2018), 664-690. (HEC, SCIE)
  41. M. NAZAM,  M. Arshad, Some Fixed Point Results in Ordered Dualistic Partial Metric Spaces,  Transactions of A. Razmadze Mathematical Institute, 172 (2018), 498-509. (HEC, ESCI)
  42. M. NAZAM,  M. Arshad, M. Postolache, On Common Fixed Point Theorems in Dualistic Partial Metric Spaces,  Journal of Mathematical Analysis, 9 (2018), 76-89. (ESCI)
  43. O. Acar, Ma Zhenhua, M. NAZAM,  S. U. Khan, Fixed Point Theorems For Integral Type Mappings Subject to  -Distance, Journal of Mathematical Analysis, 9 (2018), 59-69. (ESCI)
  44. M. NAZAM, O. Acar, On Common Fixed Points Theorems For Ordered F-contractions With Application, Facta Universitatis Ser. Math. Inform., 33 (2018), 125-140.
  45.  M. NAZAM, M.  Arshad,  A. Hussain, Fixed Points of Chatterjea Type Multi-valued F-Contractions on Closed Ball, Nonlinear Functional Analysis and Applications,  23  (2018),  259-274. (HEC, ESCI)
  46. M. NAZAM, M. Arshad, C. Park, On Fixed Point Theorems in Dualistic Partial Metric  Spaces,  J. Computational Analysis and Applications, 24 (2018), 1334-1344. (HEC, SCIE)
  47. M. NAZAM, M. Arshad, C. Park, On Solution of System of Integral Equations via Fixed Point Method, J. Computational Analysis and Applications, 24 (2018), 1474-1482. (HEC, SCIE)
  48. M. NAZAM, M. Arshad, C. Park, Dualistic Contractions of Rational Type and Related Fixed Point Theorems, J. Computational Analysis and Applications, 25 (2018), 1199-1209. (HEC, SCIE)
  49. M. NAZAM, M. Arshad, C. Park, A Common Fixed Point Theorem for a Pair of Generalized Contraction Mappings with Applications, J. Computational Analysis and Applications,  25 (2018), 552-565. (HEC, SCIE)
  50. M. NAZAM, Ma Zhenhua, S. U. Khan, M.  Arshad, Common Fixed Points of Four Maps Satisfying F-Contraction on b-metric Spaces, Journal of Function Spaces, Vol. 2017 paper ID:  9389768, 11 pages. (HEC, SCIE)
  51. M. NAZAM, C. Park, M. Arshad, Common Fixed Points of Generalized Rational Contractions on a Closed Ball in Partial Metric Spaces, J. Nonlinear Sci. Appl. 10  (2017), 5261-5270. (HEC, SCIE)
  52. M. NAZAM, M.  Arshad,  M. Abbas, Existence of Common Fixed Points of Improved F-Contractions on Partial Metric Spaces, Appl. Gen. Topol., 18 (2017),  277-287. (HEC, ESCI)
  53. A Hussain, M Arshad, M NAZAM, New Type of Multivalued F-Contraction Involving Fixed Points on Closed Ball, J. Math. Comp. Sci. 17 (2017), 246-254. (HEC, ESCI)
  54. A. Hussain, M. Arshad, M. NAZAM, Connection of Ciric type F-contraction involving fixed point on closed ball, Gazi University Journal of Science 30 (2017), 283-291. (HEC, SCOPUS)
  55. M. NAZAM, M. Arshad, O. Valero, A. Shoaib, On Dualistic Contractive Mappings, TWMS J. Pure Appl. Math., 8 (2017), 186-197. (HEC, SCIE)
  56. M. NAZAM, A. Ghiura, M. Arshad, Common Fixed Point Theorem for Generalized b-Order Rational Contraction with Application, Journal of Mathematical Analysis, 8 (2017),  34-45. (ESCI)
  57. M. NAZAM, M. Arshad, C. Park, A fixed point theorem with application to a class of integral equations, Journal of Mathematical Extension, 11 (2017), 71-83. (HEC, ESCI)
  58. M. NAZAM, M. Arshad, C. Park, Fixed Point Theorems For Improved  -Geraghty Contractions in Partial Metric Spaces, J. Nonlinear Sci. Appl. 9(6) (2016), 4436-4449. (HEC, SCIE)
  59. M. Arshad, M. NAZAM, I. Beg, Fixed Point Theorems in Ordered Dualistic Partial Metric Spaces, Korean J. Math. 24 (2016), 169-179. (HEC, ESCI)
  60. S.U. Khan, M. Arshad, A. Hussain, M. NAZAM, Two new types of fixed point theorems for F-contraction, Journal of Advanced Studies in Topology 7 (4), (2016) 251-260.
  61. M. NAZAM, M.  Arshad,  M. Abbas, Some Fixed Point Results For Dualistic Rational Contractions, Appl. Gen. Topol. 17 (2016), 199-209. (HEC, ESCI)

Project, Research Interests

  1. Fixed-point theory and its applications
  2. Optimization Theory
  3. Real and Complex Analysis
  4. Functional analysis
  • Research Project
  1. HEC research project under NRPU 2022 (Award No. 15548, Rs. 5205000)

About

The Allama Iqbal Open University was established in May, 1974, with the main objectives of providing educational opportunities to masses and to those who cannot leave their homes and jobs. During all these past years, the University has more than fulfilled this promise.